If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+100X-56=0
a = 1; b = 100; c = -56;
Δ = b2-4ac
Δ = 1002-4·1·(-56)
Δ = 10224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10224}=\sqrt{144*71}=\sqrt{144}*\sqrt{71}=12\sqrt{71}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-12\sqrt{71}}{2*1}=\frac{-100-12\sqrt{71}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+12\sqrt{71}}{2*1}=\frac{-100+12\sqrt{71}}{2} $
| t2-10t-50=50 | | F(-)=12x | | 0.7w+16+4w=27.288 | | 23=x+3-5 | | 2/3x+-1/9x+5=20 | | -5x+30+34=7-6x | | 12+2x=98 | | -5x+-30+34=7-6x | | 205x=7.75 | | 180=8x+9 | | 3x+27-3=54-2x | | 4x-3=-2(x-3) | | 180=9x+1 | | 3/2=x+4/x+2 | | -61=d+ | | 8/3+3m/12=47/12 | | 2-3(2x+8)=2x+10 | | 300-3x=450-5x | | -3(1+8n)=12+2n | | 6x^+x+72=0 | | 4(3x+1=40+3x | | 6-(x+2)=3(x+5) | | 89a=234 | | 3x+1=x+23 | | 5-2/3x=-2/3x | | 4(1+8x)+×=4+7x | | 10x+-16=6x-8 | | 8y-21=15y+3 | | |3x-6|=18 | | 62+x+44=180 | | 6.5y-19=2.5(y-4)P | | 1-p-4=-4 |